By Topic

Randomized Resource Allocation in Decentralized Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moshksar, K. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Bayesteh, A. ; Khandani, A.K.

In this paper, we consider a decentralized wireless communication network with a fixed number u of frequency subbands to be shared among N transmitter-receiver pairs. It is assumed that the number of active users is a realization of a random variable with a given probability mass function. Moreover, users are unaware of each other's codebooks and hence, no multiuser detection is possible. We propose a randomized frequency hopping (FH) scheme in which each transmitter randomly hops over a subset of u subbands from transmission slot to transmission slot. Assuming all users transmit Gaussian signals, the distribution of the noise plus interference is mixed Gaussian, which makes calculation of the mutual information between the transmitted and received signals of each user intractable. We derive lower and upper bounds on the mutual information of each user and demonstrate that, for large signal-to-noise ratio (SNR) values, the two bounds coincide. This observation enables us to compute the sum multiplexing gain of the system and obtain the optimum hopping strategy for maximizing this quantity. We compare the performance of the FH system to that of the frequency division (FD) system in terms of the following performance measures: average sum multiplexing gain (η(1)) and average minimum multiplexing gain per user (η(2)). We show that (depending on the probability mass function of the number of active users) the FH system can offer a significant improvement in terms of η(1) and η(2) (implying a more efficient usage of the spectrum). In the sequel, we consider a scenario where the transmitters are unaware of the number of active users in the network as well as the channel gains. Developing a new upper bound on the differential entropy of a mixed Gaussian random vector and using entropy power inequality, we obtain lower bounds on the maximum transmission rate per user to ensure- a specified outage probability at a given SNR level. We demonstrate that the so-called outage capacity can be considerably higher in the FH scheme than in the FD scenario for reasonable distributions on the number of active users. This guarantees a higher spectral efficiency in FH compared to FD.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 4 )