By Topic

Dispersion of the Gilbert-Elliott Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Polyanskiy, Y. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Poor, H.V. ; Verdú, S.

Channel dispersion plays a fundamental role in assessing the backoff from capacity due to finite blocklength. This paper analyzes the channel dispersion for a simple channel with memory: the Gilbert-Elliott communication model in which the crossover probability of a binary symmetric channel evolves as a binary symmetric Markov chain, with and without side information at the receiver about the channel state. With side information, dispersion is equal to the average of the dispersions of the individual binary symmetric channels plus a term that depends on the Markov chain dynamics, which do not affect the channel capacity. Without side information, dispersion is equal to the spectral density at zero of a certain stationary process, whose mean is the capacity. In addition, the finite blocklength behavior is analyzed in the non-ergodic case, in which the chain remains in the initial state forever.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 4 )