Cart (Loading....) | Create Account
Close category search window
 

Fading Multiple Access Relay Channels: Achievable Rates and Opportunistic Scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sankar, L. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Yingbin Liang ; Mandayam, Narayan B. ; Poor, H.V.

The problem of optimal resource allocation is studied for ergodic fading orthogonal multi-access relay channels (MARCs) in which the users (sources) communicate with a destination with the aid of a half-duplex relay that transmits and receives on orthogonal channels. Under the assumption that the instantaneous fading state information is available at all nodes, the maximum sum-rate and the optimal user and relay power allocations (policies) are developed for a decode-and-forward (DF) relay. A known lemma on the sum-rate of two intersecting polymatroids is used to determine the DF sum-rate and the optimal user and relay policies, and to classify fading MARCs into one of three types: (i) partially clustered MARCs in which a user is clustered either with the relay or with the destination, (ii) clustered MARCs in which all users are either proximal to the relay or to the destination, and (iii) arbitrarily clustered MARCs which are a combination of the first two types. Cutset outer bounds are used to show that DF achieves the capacity region for a sub-class of clustered orthogonal MARCs.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 4 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.