By Topic

Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dongning Guo ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; Yihong Wu ; Shamai, S. ; Verdú, S.

Consider the minimum mean-square error (MMSE) of estimating an arbitrary random variable from its observation contaminated by Gaussian noise. The MMSE can be regarded as a function of the signal-to-noise ratio (SNR) as well as a functional of the input distribution (of the random variable to be estimated). It is shown that the MMSE is concave in the input distribution at any given SNR. For a given input distribution, the MMSE is found to be infinitely differentiable at all positive SNR, and in fact a real analytic function in SNR under mild conditions. The key to these regularity results is that the posterior distribution conditioned on the observation through Gaussian channels always decays at least as quickly as some Gaussian density. Furthermore, simple expressions for the first three derivatives of the MMSE with respect to the SNR are obtained. It is also shown that, as functions of the SNR, the curves for the MMSE of a Gaussian input and that of a non-Gaussian input cross at most once over all SNRs. These properties lead to simple proofs of the facts that Gaussian inputs achieve both the secrecy capacity of scalar Gaussian wiretap channels and the capacity of scalar Gaussian broadcast channels, as well as a simple proof of the entropy power inequality in the special case where one of the variables is Gaussian.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 4 )