By Topic

New Approach to Realize Fractional Power in z -Domain at Low Frequency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. S. Visweswaran ; Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India ; P. Varshney ; M. Gupta

In this brief, modifications of the Schneider operator and the Al-Alaoui-Schneider-Kaneshige-Groutage rule have been explored for the improved performance of the fractional-order differentiator (FOD) in the low-frequency range. The FOD models are obtained using continued-fraction expansion (CFE), and it is observed that the magnitude responses obtained using the CFE outperform the results of the discretizations of FODs based on existing first-order and higher order s-to-z transformations in the low-frequency range. The phase responses of the FOD models show a linear response over a part of the low-frequency ranges that can be used for various applications. MATLAB simulation results have been presented to validate the effectiveness of the proposed work. These models can be used for hardware realizations of fractional-order systems.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:58 ,  Issue: 3 )