By Topic

Segmentation of Plaques in Sequences of Ultrasonic B-Mode Images of Carotid Arteries Based on Motion Estimation and a Bayesian Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Destrempes, F. ; Lab. of Biorheology & Med. Ultrasonics, Univ. of Montreal Hosp. Res. Center (CRCHUM), Montreal, QC, Canada ; Meunier, J. ; Giroux, M.F. ; Soulez, G.
more authors

The goal of this paper is to perform a segmentation of atherosclerotic plaques in view of evaluating their burden and to provide boundaries for computing properties such as the plaque deformation and elasticity distribution (elastogram and modulogram). The echogenicity of a region of interest comprising the plaque, the vessel lumen, and the adventitia of the artery wall in an ultrasonic B-mode image was modeled by mixtures of three Nakagami distributions, which yielded the likelihood of a Bayesian segmentation model. The main contribution of this paper is the estimation of the motion field and its integration into the prior of the Bayesian model that included a local geometrical smoothness constraint, as well as an original spatiotemporal cohesion constraint. The Maximum A Posteriori of the proposed model was computed with a variant of the exploration/selection algorithm. The starting point is a manual segmentation of the first frame. The proposed method was quantitatively compared with manual segmentations of all frames by an expert technician. Various measures were used for this evaluation, including the mean point-to-point distance and the Hausdorff distance. Results were evaluated on 94 sequences of 33 patients (for a total of 8988 images). We report a mean point-to-point distance of 0.24 ± 0.08 mm and a Hausdorff distance of 1.24 ± 0.40 mm. Our tests showed that the algorithm was not sensitive to the degree of stenosis or calcification.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 8 )