We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kar, S. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Moura, J.M.F.

This paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large-scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information flow among sensors (the consensus term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information gathering measured by the sensors (the sensing or innovations term). This leads to mixed time scale algorithms-one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 4 )