Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Temperature Issues in Saliency-Tracking-Based Sensorless Methods for PM Synchronous Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Reigosa, D.D. ; Dept. of Electr., Comput., & Syst. Eng., Univ. of Oviedo, Gijón, Spain ; Briz, F. ; Degner, M.W. ; Garcia, P.
more authors

High-frequency carrier signal excitation has been widely investigated for the position sensorless control of permanent-magnet synchronous machines (PMSMs) near and at zero speed. Selection of the injected signal characteristics (shape, frequency, magnitude, etc.) is a tradeoff between performance criteria of the sensorless control (stability, accuracy, robustness, bandwidth, etc.) and minimization of its adverse effects (additional losses, noise, vibration, etc.). The increased losses due to the injected signal can be of importance in PMSMs since they can produce a significant increase of the temperature in the rotor magnets. This can adversely impact the normal operation of the machine and can eventually result in the irreversible demagnetization of the magnets. This paper analyzes the impact that excitation using high-frequency signals for sensorless control of PMSMs has on the machine's temperature. The machine design, as well as the type of injected high-frequency signal, will be shown to strongly influence the machine's thermal behavior. Analytical models will be developed to explain this behavior, with experimental results being used to verify the analysis.

Published in:

Industry Applications, IEEE Transactions on  (Volume:47 ,  Issue: 3 )