By Topic

Improved low complexity hybrid turbo codes and union bound analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhise, A. ; Dept. of Electron. & Telecommun. Eng., K.J.S. Inst. of Eng. & Inf. Technol., Mumbai, India ; Vyavahare, P.D.

Turbo convolutional codes (TCC) are excellent error correcting codes for wireless channels. However, TCC decoders require large decoding complexity. Moreover, complexity of TCC decoder does not reduce even if puncturing is used to change the coding rate. Modified turbo codes require lower decoding complexity than TCC as they use multiple concatenations of simple block codes and convolutional codes. Recently, a class of modified turbo codes called low complexity hybrid turbo codes (LCHTC) and improved low complexity hybrid turbo codes (ILCHTC) have been proposed. It has been shown that LCHTC and ILCHTC achieve bit error rate (BER) which is comparable to TCC and have much lower decoding complexity. Simulation results show that BER performance of ILCHTC is better than that of LCHTC. Rate-1/3 ILCHTC achieve BER of 10-5 at bit energy-to-noise ratio (Eb/N0) of 1.9 dB, which is 0.4 dB higher than Eb/N0 for TCC adopted by third generation partnership project (3GPP). Moreover, ILCHTC and LCHTC decoders require half the number of computations as compared to those required for TCC decoder. In this study, union-bound analysis of ILCHTC is presented to investigate BER performance<;10-6. For large interleaver lengths, analysis of theoretical union bound requires numerous computations. Therefore approximate analysis of union bound is derived from theoretical union bound. It is shown that the analysis of approximate union bound achieves reasonable accuracy. Moreover, approximate union bound can be evaluated with significantly less computational complexity than the theoretical union bound.

Published in:

Communications, IET  (Volume:5 ,  Issue: 4 )