By Topic

A Cross-Layer Framework for Overhead Reduction, Traffic Scheduling, and Burst Allocation in IEEE 802.16 OFDMA Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jia-Ming Liang ; Dept. of Comput. Sci., Nat. Chiao-Tung Univ., Hsin-Chu, Taiwan ; Jen-Jee Chen ; You-Chiun Wang ; Yu-Chee Tseng

IEEE 802.16 orthogonal frequency-division multiple access (OFDMA) downlink subframes have a special 2-D channel-time structure. Allocation resources from such a 2-D structure incur extra control overheads that hurt network performance. Existing solutions try to improve network performance by designing either the scheduler in the medium access control layer or the burst allocator in the physical layer, but the efficiency of overhead reduction is limited. In this paper, we point out the necessity of “codesigning” both the scheduler and the burst allocator to efficiently reduce overheads and improve network performance. Under the partial-usage-of-subcarriers model, we propose a cross-layer framework that covers overhead reduction, real-time and non-real-time traffic scheduling, and burst allocation. The framework includes a two-tier priority-based scheduler and a bucket-based burst allocator, which is more complete and efficient than prior studies. Both the scheduler and the burst allocator are tightly coupled together to solve the problem of arranging resources to data traffic. Given available space and bucket design from the burst allocator, the scheduler can well utilize the frame resource, reduce real-time traffic delays, and maintain fairness. On the other hand, with priority knowledge and resource assignment from the scheduler, the burst allocator can efficiently arrange downlink bursts to satisfy traffic requirements with low complexity. Through analysis, the cross-layer framework is validated to give an upper bound to overheads and achieve high network performance. Extensive simulation results verify that the cross-layer framework significantly increases network throughput, maintains long-term fairness, alleviates real-time traffic delays, and enhances frame utilization.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 4 )