By Topic

Toward Automated Definition Acquisition From Operations Law

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Chang ; Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Diesner, J. ; Carley, K.M.

Definition acquisition is a necessary step in building an artificial cognitive assistant that helps military personnel to gain fast and precise understanding of the various terms and procedures defined in applicable legal documents. We approach the task of identifying definitional sentences from operations law documents by formalizing this task as a sentence-classification task and solving it by using machine-learning methods. This paper reports on a series of empirical experiments in that we evaluate and compare the performance of learning algorithms in terms of label-prediction accuracy. Using supervised techniques results in an F1 score of 95.93% and a 96.72% recall rate. However, for real-world applications, it would be too costly and unrealistic to ask personnel involved in military operations to label substantial amounts of data in order to build a new classifier for different types or genres of text data. Therefore, we propose and implement a semisupervised (SS) solution that trades off prediction accuracy to label efficiency. Our SS approach achieves a 90.47% F1 score and 93.44% recall rate by using only eight sentences labeled by a human expert.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 2 )