By Topic

Multichannel Dosimeter and \alpha -Al _{2} O _{3} :C Optically Stimulated Luminescence (OSL) Fiber Sensors for Use in Radiation Therapy—Evaluation With Photon Beams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Magne, S. ; Lab. de Mesures Opt., CEA, Gif-sur-Yvette, France ; de Carlan, L. ; Bordy, J.-M. ; Isambert, A.
more authors

A multichannel OSL fiber optic dosimeter based on optically stimulated luminescence (OSL) of alumina is proposed for online in vivo dosimetry (IVD) in radiation therapy (RT). Two types of dosimetric-grade Al2O3:C crystals are compared and show different behavior according to manufacturing process. Metrological validations have been performed with a Saturne 43 LINAC in reference conditions at CEA LIST LNHB (French Ionizing Radiation Reference Laboratory). The dose response of OSL integrals under photon beam irradiation (6, 12, and 20 MV) show sublinearity behavior modeled by second-order equations and exhibit a small energy dependence (between 0.7% and 1.4%), explained by a modified intermediate cavity model adapted to a LINAC photon spectrum. Preclinical tests at Institut Gustave Roussy (IGR) prove that a proper design for a PMMA build-up cap leads to a low dependence vs photon beam orientation (± 1.5% and ± 0.9%) and vs field size in view of surface measurements.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:58 ,  Issue: 2 )