Cart (Loading....) | Create Account
Close category search window
 

Active 220- and 325-GHz Frequency Multiplier Chains in an SiGe HBT Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ojefors, E. ; Inst. for High-Freq. & Commun. Technol., Univ. of Wuppertal, Wuppertal, Germany ; Heinemann, B. ; Pfeiffer, U.R.

A 325-GHz ×18 frequency multiplier chain implemented in a fτ/fmax = 250 GHz/380 GHz evaluation SiGe heterojunction bipolar transistor technology is presented. The chain achieves a peak output power of -3 dBm and consists of a balanced doubler driven by two cascaded tripler stages. It operates from 317 to 328 GHz with a 0-dBm 18-GHz input signal and a 1.5-W power consumption. Additionally, 220- and 325-GHz doubler breakout circuits with integrated driver amplifiers are presented. The doublers reach an output power of -1 dBm at 220 GHz and -3 dBm at 325 GHz with a power dissipation of 630 and 420 mW, respectively.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.