By Topic

Automated Monitoring of Airgap Eccentricity for Inverter-Fed Induction Motors Under Standstill Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Doosoo Hyun ; Coll. of Eng., Korea Univ., Seoul, South Korea ; Jongman Hong ; Sang Bin Lee ; Kwonhee Kim
more authors

There are many limitations to applying online spectrum analysis techniques for diagnosis of closed-loop inverter-fed induction motors due to variable load or frequency operation, and the masking effect of the current regulator. In this paper, a new automated approach for testing inverter-fed induction machines for airgap eccentricity is proposed. The main concept is to use the inverter to excite the machine with a pulsating field at multiple angular positions to observe the variation of equivalent impedance due to eccentricity, whenever the motor is stopped. It is shown that the increase in the value of the equivalent (leakage) inductance under standstill excitation can be used as an indicator of increasing airgap eccentricity. Standstill testing can provide reliable assessment of eccentricity that is independent of variations in operating conditions, load interferences, or motor type. An experimental study on a 7.5-hp induction motor verifies that eccentricity can be detected with high sensitivity and reliability without additional hardware.

Published in:

Industry Applications, IEEE Transactions on  (Volume:47 ,  Issue: 3 )