By Topic

A System for the Estimation of Single-Tree Stem Diameter and Volume Using Multireturn LIDAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dalponte, M. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy ; Bruzzone, L. ; Gianelle, D.

Forest inventories are important tools for the management of forests. In this context, the estimation of the tree stem volume is a key issue. In this paper, we present a system for the estimation of forest stem diameter and volume at individual tree level from multireturn light detection and ranging (LIDAR) data. The proposed system is made up of a preprocessing module, a LIDAR segmentation algorithm (aimed at retrieving tree crowns), a variable extraction and selection procedure, and an estimation module based on support vector regression (SVR) (which is compared with a multiple linear regression technique). The variables derived from LIDAR data are computed from both the intensity and elevation channels of all available returns. Three different methods of variable selection are analyzed, and the sets of variables selected are used in the estimation phase. The stem volume is estimated with two methods: 1) direct estimation from the LIDAR variables and 2) combination of diameters and heights estimated from LIDAR variables with the species information derived from a classification map according to standard height/diameter relationships. Experimental results show that the system proposed is effective and provides high accuracies in both the stem volume and diameter estimations. Moreover, this paper provides useful indications on the effectiveness of SVR with LIDAR in forestry problems.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 7 )