Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Exploiting the Essential Assumptions of Analogy-Based Effort Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kocaguneli, E. ; Lane Dept. of Comput. Sci. & Electr. Eng., West Virginia Univ., Morgantown, WV, USA ; Menzies, T. ; Bener, A. ; Keung, J.W.

Background: There are too many design options for software effort estimators. How can we best explore them all? Aim: We seek aspects on general principles of effort estimation that can guide the design of effort estimators. Method: We identified the essential assumption of analogy-based effort estimation, i.e., the immediate neighbors of a project offer stable conclusions about that project. We test that assumption by generating a binary tree of clusters of effort data and comparing the variance of supertrees versus smaller subtrees. Results: For 10 data sets (from Coc81, Nasa93, Desharnais, Albrecht, ISBSG, and data from Turkish companies), we found: 1) The estimation variance of cluster subtrees is usually larger than that of cluster supertrees; 2) if analogy is restricted to the cluster trees with lower variance, then effort estimates have a significantly lower error (measured using MRE, AR, and Pred(25) with a Wilcoxon test, 95 percent confidence, compared to nearest neighbor methods that use neighborhoods of a fixed size). Conclusion: Estimation by analogy can be significantly improved by a dynamic selection of nearest neighbors, using only the project data from regions with small variance.

Published in:

Software Engineering, IEEE Transactions on  (Volume:38 ,  Issue: 2 )