By Topic

Computing Smooth Time Trajectories for Camera and Deformable Shape in Structure from Motion with Occlusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paulo F. U. Gotardo ; The Ohio State University, Columbus ; Aleix M. Martinez

We address the classical computer vision problems of rigid and nonrigid structure from motion (SFM) with occlusion. We assume that the columns of the input observation matrix W describe smooth 2D point trajectories over time. We then derive a family of efficient methods that estimate the column space of W using compact parameterizations in the Discrete Cosine Transform (DCT) domain. Our methods tolerate high percentages of missing data and incorporate new models for the smooth time trajectories of 2D-points, affine and weak-perspective cameras, and 3D deformable shape. We solve a rigid SFM problem by estimating the smooth time trajectory of a single camera moving around the structure of interest. By considering a weak-perspective camera model from the outset, we directly compute euclidean 3D shape reconstructions without requiring postprocessing steps such as euclidean upgrade and bundle adjustment. Our results on real SFM data sets with high percentages of missing data compared positively to those in the literature. In nonrigid SFM, we propose a novel 3D shape trajectory approach that solves for the deformable structure as the smooth time trajectory of a single point in a linear shape space. A key result shows that, compared to state-of-the-art algorithms, our nonrigid SFM method can better model complex articulated deformation with higher frequency DCT components while still maintaining the low-rank factorization constraint. Finally, we also offer an approach for nonrigid SFM when W is presented with missing data.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:33 ,  Issue: 10 )