Cart (Loading....) | Create Account
Close category search window
 

Using Facial Symmetry to Handle Pose Variations in Real-World 3D Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Passalis, G. ; Dept. of Inf. & Telecommun., Univ. of Athens, Athens, Greece ; Perakis, P. ; Theoharis, T. ; Kakadiaris, I.A.

The uncontrolled conditions of real-world biometric applications pose a great challenge to any face recognition approach. The unconstrained acquisition of data from uncooperative subjects may result in facial scans with significant pose variations along the yaw axis. Such pose variations can cause extensive occlusions, resulting in missing data. In this paper, a novel 3D face recognition method is proposed that uses facial symmetry to handle pose variations. It employs an automatic landmark detector that estimates pose and detects occluded areas for each facial scan. Subsequently, an Annotated Face Model is registered and fitted to the scan. During fitting, facial symmetry is used to overcome the challenges of missing data. The result is a pose invariant geometry image. Unlike existing methods that require frontal scans, the proposed method performs comparisons among interpose scans using a wavelet-based biometric signature. It is suitable for real-world applications as it only requires half of the face to be visible to the sensor. The proposed method was evaluated using databases from the University of Notre Dame and the University of Houston that, to the best of our knowledge, include the most challenging pose variations publicly available. The average rank-one recognition rate of the proposed method in these databases was 83.7 percent.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 10 )
Biometrics Compendium, IEEE

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.