By Topic

Maximum Ambiguity-Based Sample Selection in Fuzzy Decision Tree Induction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xi-Zhao Wang ; Hebei University, Baoding ; Ling-Cai Dong ; Jian-Hui Yan

Sample selection is to select a number of representative samples from a large database such that a learning algorithm can have a reduced computational cost and an improved learning accuracy. This paper gives a new sample selection mechanism, i.e., the maximum ambiguity-based sample selection in fuzzy decision tree induction. Compared with the existing sample selection methods, this mechanism selects the samples based on the principle of maximal classification ambiguity. The major advantage of this mechanism is that the adjustment of the fuzzy decision tree is minimized when adding selected samples to the training set. This advantage is confirmed via the theoretical analysis of the leaf-nodes' frequency in the decision trees. The decision tree generated from the selected samples usually has a better performance than that from the original database. Furthermore, experimental results show that generalization ability of the tree based on our selection mechanism is far more superior to that based on random selection mechanism.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:24 ,  Issue: 8 )