By Topic

RENNSH: A Novel alpha-Helix Identification Approach for Intermediate Resolution Electron Density Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lingyu Ma ; University of Freiburg, Freiburg ; Marco Reisert ; Hans Burkhardt

Accurate identification of protein secondary structures is beneficial to understand three-dimensional structures of biological macromolecules. In this paper, a novel refined classification framework is proposed, which treats alpha-helix identification as a machine learning problem by representing each voxel in the density map with its Spherical Harmonic Descriptors (SHD). An energy function is defined to provide statistical analysis of its identification performance, which can be applied to all the α-helix identification approaches. Comparing with other existing α-helix identification methods for intermediate resolution electron density maps, the experimental results demonstrate that our approach gives the best identification accuracy and is more robust to the noise.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:9 ,  Issue: 1 )