By Topic

Antibody-Specified B-Cell Epitope Prediction in Line with the Principle of Context-Awareness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Zhao ; Bioinf. Res. Center, Nanyang Technol. Univ., Singapore, Singapore ; Limsoon Wong ; Jinyan Li

Context-awareness is a characteristic in the recognition between antigens and antibodies, highlighting the reconfiguration of epitope residues when an antigen interacts with a different antibody. A coarse binary classification of antigen regions into epitopes, or nonepitopes without specifying antibodies may not accurately reflect this biological reality. Therefore, we study an antibody-specified epitope prediction problem in line with this principle. This problem is new and challenging as we pinpoint a subset of the antigenic residues from an antigen when it binds to a specific antibody. We introduce two kinds of associations of the contextual awareness: 1) residues-residues pairing preference, and 2) the dependence between sets of contact residue pairs. Preference plays a bridging role to link interacting paratope and epitope residues while dependence is used to extend the association from one-dimension to two-dimension. The paratope/epitope residues' relative composition, cooperativity ratios, and Markov properties are also utilized to enhance our method. A nonredundant data set containing 80 antibody-antigen complexes is compiled and used in the evaluation. The results show that our method yields a good performance on antibody-specified epitope prediction. On the traditional antibody-ignored epitope prediction problem, a simplified version of our method can produce a competitive, sometimes much better, performance in comparison with three structure-based predictors.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 6 )