By Topic

MEMS tunable metamaterials surfaces and their applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Chicherin, D. ; Sch. of Sci. & Technol., Dept. of Radio Sci. & Eng., Aalto Univ., Aalto, Finland ; Sterner, M. ; Dudorov, S. ; Lioubtchenko, D.
more authors

Microelectromechanical systems (MEMS) are proposed as a technological solution for fabrication of metamaterials. This enables tunability of metamaterials effective properties and allows using metamaterials in wide range of applications. Low loss of the MEMS devices allows the metamaterials application to be extended to millimeter and submillimeter wave frequencies without compromising on performance. Electronic beam steering by MEMS tunable metamaterials at millimeter wavelength is considered and a prototype of a W band analog tunable phase shifter is demonstrated. The insertion loss of the fabricated MEMS tunable metamaterials surface varies from 0.7 dB to a maximum of 3.5 dB (at a resonance frequency). MEMS varactors have shown reliable and repeatable analog operation over 108 cycles.

Published in:

Microwave Conference Proceedings (APMC), 2010 Asia-Pacific

Date of Conference:

7-10 Dec. 2010