By Topic

Cold-mode characteristics of 90 nm CMOS device with negative body bias and highly linear millimeter-wave switch applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Guan-Yu Chen ; Department of Electrical Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan, 32001, Taiwan, R.O.C. ; Hong-Yeh Chang ; Ching-Yan Chan ; Wen-Hua Tu
more authors

In this paper, a negative body bias technique is employed to enhance the performance of a single-port double-throw (SPDT) traveling-wave switch. The switch is fabricated using a commercial standard bulk 90 nm CMOS process. Between 30 and 92 GHz, the proposed circuit demonstrates an insertion loss of lower than 3.7 dB, an isolation of higher than 35 dB, an output 1-dB compression point (P1dB) of higher than 17 dBm, and an input third-order intercept point (IIP3) of higher than 28 dBm. The core area of the switch is 0.3 × 0.2 mm2. With the body bias, the insertion loss and the linearity of the switch are both improved since the parasitic capacitance of the NMOS device is further reduced. The design concept and theory calculation are also presented.

Published in:

2010 Asia-Pacific Microwave Conference

Date of Conference:

7-10 Dec. 2010