By Topic

A Simple Critical-Load-Based CAC Scheme for IEEE 802.11 DCF Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qinglin Zhao ; Faculty of Information Technology, Macau University of Science and Technology, Macau, China ; Danny H. K. Tsang ; Taka Sakurai

This paper proposes a simple and practical call admission control (CAC) scheme for one-hop IEEE 802.11 distributed coordination function (DCF) networks in heterogeneous environments. The proposed scheme is the first CAC scheme derived from an asymptotic analysis of the critical traffic load, where the critical traffic load represents the threshold for queue stability. The salient feature of our CAC scheme is that it can be performed quickly and easily without the need for network performance measurements and complex calculations. Using the proposed scheme, we specifically investigate the voice capacity of 802.11 DCF networks with unbalanced traffic. Extensive simulations covering both ad hoc and infrastructure-based networks, and a variety of nonsaturated traffic types, show that the proposed CAC scheme is very effective.

Published in:

IEEE/ACM Transactions on Networking  (Volume:19 ,  Issue: 5 )