Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

60-GHz Millimeter-Wave Identification Reader on 90-nm CMOS and LTCC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Pursula, P. ; VTT Tech. Res. Centre of Finland, Espoo, Finland ; Karttaavi, T. ; Kantanen, M. ; Lamminen, A.
more authors

A reader module at 60 GHz for high data-rate short-range backscattering-based communications is presented. The reader consists of a CMOS-based oscillator, amplifiers, and a mixer on a low-temperature co-fired ceramic (LTCC) substrate. The filter, power splitter, and antennas are directly patterned on the LTCC. All millimeter-wave components are contained within the module and the only interfaces to the module are the IF and bias lines. Transmit power of the module is +11.6-dBm effective isotropic radiated power with an IF bandwidth of 400 MHz. The LTCC module measures 13×24 mm2 and has a dc power consumption of 130 mW. Reception of a 20-MHz square wave from a tag 5 cm apart from the reader is demonstrated; the suggested millimeter-wave identification concept enables a 102- 103-fold data-rate increase in comparison to the present near-field communication technique, with similar size, range, and power consumption of the reader.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 4 )