By Topic

A Maximum Entropy Solution of the Covariance Extension Problem for Reciprocal Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Francesca P. Carli ; Department of Information Engineering (DEI), University of Padova, Padova, Italy ; Augusto Ferrante ; Michele Pavon ; Giorgio Picci

Stationary reciprocal processes defined on a finite interval of the integer line can be seen as a special class of Markov random fields restricted to one dimension. Nonstationary reciprocal processes have been extensively studied in the past especially by Jamison et al. The specialization of the nonstationary theory to the stationary case, however, does not seem to have been pursued in sufficient depth in the literature. Stationary reciprocal processes (and reciprocal stochastic models) are potentially useful for describing signals which naturally live in a finite region of the time (or space) line. Estimation or identification of these models starting from observed data seems still to be an open problem which can lead to many interesting applications in signal and image processing. In this paper, we discuss a class of reciprocal processes which is the acausal analog of auto-regressive (AR) processes, familiar in control and signal processing. We show that maximum likelihood identification of these processes leads to a covariance extension problem for block-circulant covariance matrices. This generalizes the famous covariance band extension problem for stationary processes on the integer line. As in the usual stationary setting on the integer line, the covariance extension problem turns out to be a basic conceptual and practical step in solving the identification problem. We show that the maximum entropy principle leads to a complete solution of the problem.

Published in:

IEEE Transactions on Automatic Control  (Volume:56 ,  Issue: 9 )