By Topic

Spin-Transfer Torque MRAMs for Low Power Memories: Perspective and Prospective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Charles Augustine ; ECE, Purdue University, West Lafayette, United States ; Niladri Narayan Mojumder ; Xuanyao Fong ; Sri Harsha Choday
more authors

Electron-spin based data storage for on-chip memories has the potential for ultrahigh density, low power consumption, very high endurance, and reasonably low read/write latency. In this article, we analyze the energy-performance characteristics of a state-of-the-art spin-transfer-torque based magnetic random access memories (STT-MRAM) bit-cell in the presence of parametric process variations. In order to realize ultra low power under process variations, we propose device, bit-cell and architecture level design techniques. Such design methods at various levels of design abstraction has been found to achieve substantially enhanced robustness, density, reliability and low power as compared to their charge-based counterparts for future embedded applications.

Published in:

IEEE Sensors Journal  (Volume:12 ,  Issue: 4 )