By Topic

Design of Polarization-Insensitive Optical Fiber Probe Based on Effective Optical Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pham, T.T.H. ; Mech. Eng. Dept., Nat. Cheng Kung Univ., Tainan, Taiwan ; Yu-Lung Lo ; Po-Chun Chen

When using an optical fiber probe to measure the properties of anisotropic optical materials, some form of polarization controller is required to compensate for the inherent birefringence and diattenuation properties of the fiber. The experimental settings of the optical components within the polarization controller are generally determined on a trial-and-error basis; resulting in a lengthy experimentation process. Accordingly, in the present study, a method is proposed for calculating in advance the precise controller settings required to guarantee the formation of a free-space condition. In the proposed approach, the effective optical parameters of the optical fiber are determined using an analytical method, and the optimal settings of the polarization controller are then determined using a genetic algorithm. It is shown that the proposed approach enables a free-space condition to be achieved for the common polarization controller. The practical applicability of the proposed approach is demonstrated by remotely and absolutely measuring the linear birefringence and linear diattenuation properties of a quarter-wave plate and a polarizer, respectively.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 8 )