Cart (Loading....) | Create Account
Close category search window
 

Parallel implementation of a recursive least squares neural network training method on the Intel iPSC/2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

An algorithm based on the Marquardt-Levenberg least-square optimization method has been shown by S. Kollias and D. Anastassiou (IEEE Trans. on Circuits Syst. vol.36, no.8, p.1092-101, Aug. 1989) to be a much more efficient training method than gradient descent, when applied to some small feedforward neural networks. Yet, for many applications, the increase in computational complexity of the method outweighs any gain in learning rate obtained over current training methods. However, the least-squares method can be more efficiently implemented on parallel architectures than standard methods. This is demonstrated by comparing computation times and learning rates for the least-squares method implemented on 1, 2, 4, 8, and 16 processors on an Intel iPSC/2 multicomputer. Two applications which demonstrate the faster real-time learning rate of the last-squares method over than of gradient descent are given

Published in:

Neural Networks, 1990., 1990 IJCNN International Joint Conference on

Date of Conference:

17-21 June 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.