By Topic

Low-level image processing and edge enhancement using a self-organizing neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A self-organizing artificial neural network has been described to enhance and restore gray-level images for applications in low-level image processing. The image is described by a set of interconnected neurons with their values equal to the gray-level values of corresponding pixels. The first-order and second-order contrast links are defined among the neurons which are analyzed for a change in their values in the adaptive constrained environment. Each selected neuron is analyzed only once per iteration, in which its value may be readjusted by incrementing or decrementing the current value. As a result, at the end of each iteration the image data is reorganized. The structure and algorithm of the proposed neural network are presented along with various experimental results showing the capability of such a network to restore and enhance the gray-level images

Published in:

Neural Networks, 1990., 1990 IJCNN International Joint Conference on

Date of Conference:

17-21 June 1990