By Topic

A New Computational Approach for Maximum Link Activation in Wireless Networks under the SINR Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Antonio Capone ; Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy ; Lei Chen ; Stefano Gualandi ; Di Yuan

A fundamental and computationally challenging optimization task in wireless networks is to maximize the number of simultaneous transmissions, subject to signal-to-noise-and-interference ratio (SINR) requirements at the receivers. The conventional approach guaranteeing global optimality is to solve an integer programming model with explicit SINR constraints. These constraints are however numerically very difficult. We develop a new integer programming algorithm based on a much more effective representation of the SINR constraints. Computational experiments demonstrate that the new approach performs significantly better in proving optimality.

Published in:

IEEE Transactions on Wireless Communications  (Volume:10 ,  Issue: 5 )