By Topic

An Importance Sampling Method for TDOA-Based Source Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gang Wang ; State Key Laboratory of Integrated Services Networks (ISN Lab), Xidian University, Xi'an, 710071, China ; Hongyang Chen

We consider the source localization problem using time-difference-of-arrival (TDOA) measurements in sensor networks. The maximum likelihood (ML) estimation of the source location can be cast as a nonlinear/nonconvex optimization problem, and its global solution is hardly obtained. In this paper, we resort to the Monte Carlo importance sampling (MCIS) technique to find an approximate global solution to this problem. To obtain an efficient importance function that is used in the technique, we construct a Gaussian distribution and choose its probability density function (pdf) as the importance function. In this process, an initial estimate of the source location is required. We reformulate the problem as a nonlinear robust least squares (LS) problem, and relax it as a second-order cone programming (SOCP), the solution of which is used as the initial estimate. Simulation results show that the proposed method can achieve the Cramer-Rao bound (CRB) accuracy and outperforms several existing methods.

Published in:

IEEE Transactions on Wireless Communications  (Volume:10 ,  Issue: 5 )