By Topic

Single-Fed Broadband Circularly Polarized Stacked Patch Antenna With Horizontally Meandered Strip for Universal UHF RFID Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhongbao Wang ; Sch. of Inf. Sci. & Technol., Dalian Maritime Univ., Dalian, China ; Shaojun Fang ; Shiqiang Fu ; Shouli Jia

In this paper, a horizontally meandered strip (HMS) feed technique is proposed to achieve good impedance matching and symmetrical broadside radiation patterns for a single-fed broadband circularly polarized stacked patch antenna, which is suitable for universal ultrahigh frequency (UHF) RF identification (RFID) applications. The antenna is composed of two corner truncated patches and an HMS, all of which are printed on the upper side of the FR4 substrates. One end of the HMS is connected to the main patch by a probe, while the other end is connected to an SMA connector. Simulation results are compared with the measurements, and a good agreement is obtained. The measurements show that the antenna has an impedance bandwidth (VSWR <; 1.5) of about 25.8% (758-983 MHz), a 3-dB axial ratio (AR) bandwidth of about 13.5% (838-959 MHz), and a gain level of about 8.6 dBic or larger within the 3-dB AR bandwidth. Therefore, the proposed antenna can be a good candidate for universal UHF RFID readers operating at the UHF band of 840-955 MHz. In addition, a parametric study and a design guideline of the proposed antenna are presented to provide the engineers with information for designing, modifying, and optimizing such an antenna. At last, the proposed antenna is validated in RFID system applications.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 4 )