Cart (Loading....) | Create Account
Close category search window
 

An automated design methodology for stress avoidance in analog & mixed signal designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sameer, R. ; Electron. & Commun. Dept., Cairo Univ., Giza, Egypt ; Mohieldin, A.N. ; Eissa, H.M.

Continuous scaling of CMOS devices in nm regime along with the complex processes result in increasing stress contribution in circuit performance that is no longer second order effect. Shallow Trench Isolation (STI) induced mechanical stress impacts analog designs dramatically, it is sufficient to shift bias point, change design parameters, and cause severe mismatch between transistors. This paper presents a design methodology in order to avoid stress effects in analog/mixed signal designs. This methodology flow is based on early prediction of stress effects prior to layout design to save time and avoid further costly layout iterations. Impact of STI stress on circuit performance is characterized in 40-nm CMOS technology through an op-amp and a latched comparator circuits. Furthermore, the performance after applying the proposed methodology is shown for methodology verification.

Published in:

Design and Test Workshop (IDT), 2010 5th International

Date of Conference:

14-15 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.