By Topic

Segmentation of noisy colour images using cauchy distribution in the complex wavelet domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Wan ; Sch. of Inf. Sci. & Technol., Beijing Normal Univ., Beijing, China ; N. Canagarajah ; A. Achim

This study proposes a novel image segmentation technique for noisy colour images, in which the heavy-tailed characteristics of the image are modelled by Cauchy distributions. First, the RGB colour bands of the noisy image are decomposed into multiresolution representations using the dual-tree complex wavelet transform. For each wavelet subband, a model is built assuming that the input coefficients are contaminated with signal-independent additive white Gaussian noise. Hence, the authors derive an estimation rule in the wavelet domain to obtain the noise-free coefficients based on the bivariate Cauchy distribution. The bivariate model makes it possible to exploit the inter-scale dependencies of wavelet coefficients. Subsequently, the image is roughly segmented into textured and non-textured regions using the bivariate model parameters corresponding to the denoised coefficients. A multiscale segmentation is then applied to the resulting regions. Finally, a novel statistical region merging algorithm is introduced by measuring the Kullback-Leibler distance between the estimated Cauchy models for the neighbouring segments. The experiments demonstrate that the authors algorithm yields robust segmentation results for noisy images containing artificial or natural noise.

Published in:

IET Image Processing  (Volume:5 ,  Issue: 2 )