By Topic

Enhancement of Measurement Efficiency for Electrical Capacitance Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhaoyan Fan ; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA ; Robert X. Gao

This paper presents a new sensing method to improve the efficiency of electrical capacitance tomography. Instead of applying one excitation signal to one electrode at a time, the multiple excitation capacitance polling (MECaP) method progressively applies an increasing number of multiple excitations to multiple electrodes and simultaneously measures the capacitance values, thereby significantly increasing the image scanning speed. The performance of a MECaP-based sensor system is numerically simulated and analyzed using the finite element method. Experimental evaluation of the numerical results demonstrates the effectiveness and efficiency of the new sensing technique and its applicability to a broad range of commercial and industrial applications where permittivity determination through capacitance measurement provides an effective means for noninvasive dynamic processes monitoring in an enclosed environment.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:60 ,  Issue: 5 )