By Topic

State Observability and Observers of Linear-Time-Invariant Systems Under Irregular Sampling and Sensor Limitations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Le Yi Wang ; Dept. of Electr. & Comput. Eng., Wayne State Univ., Detroit, MI, USA ; Chanying Li ; Yin, G.G. ; Guo, L.
more authors

State observability and observer designs are investigated for linear-time-invariant systems in continuous time when the outputs are measured only at a set of irregular sampling time sequences. The problem is primarily motivated by systems with limited sensor information in which sensor switching generates irregular sampling sequences. State observability may be lost and the traditional observers may fail in general, even if the system has a full-rank observability matrix. It demonstrates that if the original system is observable, the irregularly sampled system will be observable if the sampling density is higher than some critical frequency, independent of the actual time sequences. This result extends Shannon's sampling theorem for signal reconstruction under periodic sampling to system observability under arbitrary sampling sequences. State observers and recursive algorithms are developed whose convergence properties are derived under potentially dependent measurement noises. Persistent excitation conditions are validated by designing sampling time sequences. By generating suitable switching time sequences, the designed state observers are shown to be convergent in mean square, with probability one, and with exponential convergence rates. Schemes for generating desired sampling sequences are summarized.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 11 )