By Topic

A study on control mechanism of above knee robotic prosthesis based on CPG model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xin Guo ; Sch. of Control Sci. & Eng., Hebei Univ. of Technol., Tianjin, China ; Lingling Chen ; Yang Zhang ; Peng Yang
more authors

With the development of biomedicine and microcontroller technology, above knee prosthesis has been improved rapidly. However most current researches just focus on the single knee joint, and ignore the coupling between knee joint and ankle joint, which do not meet the needs of patients who need to perform multi-joint coordinated movement. This paper presents a new control method using bipedal robotics technology, bio-inspiration based on CPG net. According to this method, primary controller embedded in kneeankle joint can receive the command from subject, recognize the movement mode, and send the start command to lower which realize the movement of above knee prosthesis. The previous findings show that sEMG can be employed to identify the movement mode based on SVM. And nonlinear oscillator, used for controlling multi-legged robot, can be employed to realize the lower limb movement. Further this paper explores the biodynamic effect of multi-joint, and tries to find the coupling rule and identify the MIMO neuromuscular model.

Published in:

Robotics and Biomimetics (ROBIO), 2010 IEEE International Conference on

Date of Conference:

14-18 Dec. 2010