By Topic

Gender Classification for Web Forums

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yulei Zhang ; W.A. Franke Coll. of Bus., Northern Arizona Univ., Flagstaff, AZ, USA ; Yan Dang ; Hsinchun Chen

More and more women are participating in and exchanging opinions through community-based online social media. Questions concerning gender differences in the new media have been raised. This paper proposes a feature-based text classification framework to examine online gender differences between Web forum posters by analyzing writing styles and topics of interest. Our experiment on an Islamic women's political forum shows that feature sets containing both content-free and content-specific features perform significantly better than those consisting of only content-free features, feature selection can improve the classification results significantly, and female and male participants have significantly different topics of interest.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:41 ,  Issue: 4 )