By Topic

Scattering From Complex Bodies of Revolution Using a High-Order Mixed Finite Element Method and Locally-Conformal Perfectly Matched Layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Bo Zhai ; Institute of Target Characteristics and Identification and the State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Southeast University, Nanjing, China ; Xue Wei Ping ; Tie Jun Cui

An efficient finite-element method (FEM) is presented to analyze the scattering from complex bodies of revolution (BOR) made of perfectly electric conductors and/or dielectrics. In the proposed method, high-order edge-based vector basis functions are used to expand the transverse field components, and high-order node-based scalar basis functions are used to expand the angular component. The FEM mesh is truncated using a locally-conformal perfectly matched layer (PML) by the complex coordinate stretching. Such a kind of PML is very easy to implement in the numerical process and is able to enclose an arbitrarily-shaped convex object in the spatial domain. Numerical examples are presented to demonstrate the accuracy and efficiency of the presented method.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:59 ,  Issue: 5 )