By Topic

A Modal Approach to Tuning and Bandwidth Enhancement of an Electrically Small Antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adams, J.J. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA ; Bernhard, J.T.

We describe the physical phenomena that contribute to the behavior of an electrically small TM10 antenna using characteristic mode theory. The application of characteristic modes to antenna tuning and bandwidth enhancement serves as demonstration of the broad utility of the modal technique. A modal analysis of the TM10 antenna's impedance match yields several interesting observations as to the nature of resonances and antiresonances, which has implications for the impedance matching of small antennas in general. Furthermore, to overcome the bandwidth limitations inherent in small antennas, we determine that multiple resonances must be combined and use a conductance ratio as a figure of merit for design. We then investigate the TM10 antenna's potential for multiresonant operation by examining different candidate modes. Using the appropriate characteristic modes to form multiple resonances, we show how the bandwidth of the TM10 antenna can be designed to be nearly double that expected from the physical limit for a single resonance.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 4 )