System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Statistical Change Detection by the Pool Adjacent Violators Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lanza, A. ; Dept. of Electron., Comput. Sci. & Syst. (DEIS), Univ. of Bologna, Bologna, Italy ; Di Stefano, L.

In this paper, we present a statistical change detection approach aimed at being robust with respect to the main disturbance factors acting in real-world applications such as illumination changes, camera gain and exposure variations, noise. We rely on modeling the effects of disturbance factors on images as locally order-preserving transformations of pixel intensities plus additive noise. This allows us to identify within the space of all of the possible image change patterns the subspace corresponding to disturbance factors effects. Hence, scene changes can be detected by a-contrario testing the hypothesis that the measured pattern is due to disturbance factors, that is, by computing a distance between the pattern and the subspace. By assuming additive Gaussian noise, the distance can be computed within a maximum likelihood nonparametric isotonic regression framework. In particular, the projection of the pattern onto the subspace is computed by an O(N) iterative procedure known as Pool Adjacent Violators algorithm.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 9 )