Cart (Loading....) | Create Account
Close category search window
 

Maximal Linear Embedding for Dimensionality Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ruiping Wang ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Shiguang Shan ; Xilin Chen ; Jie Chen
more authors

Over the past few decades, dimensionality reduction has been widely exploited in computer vision and pattern analysis. This paper proposes a simple but effective nonlinear dimensionality reduction algorithm, named Maximal Linear Embedding (MLE). MLE learns a parametric mapping to recover a single global low-dimensional coordinate space and yields an isometric embedding for the manifold. Inspired by geometric intuition, we introduce a reasonable definition of locally linear patch, Maximal Linear Patch (MLP), which seeks to maximize the local neighborhood in which linearity holds. The input data are first decomposed into a collection of local linear models, each depicting an MLP. These local models are then aligned into a global coordinate space, which is achieved by applying MDS to some randomly selected landmarks. The proposed alignment method, called Landmarks-based Global Alignment (LGA), can efficiently produce a closed-form solution with no risk of local optima. It just involves some small-scale eigenvalue problems, while most previous aligning techniques employ time-consuming iterative optimization. Compared with traditional methods such as ISOMAP and LLE, our MLE yields an explicit modeling of the intrinsic variation modes of the observation data. Extensive experiments on both synthetic and real data indicate the effectivity and efficiency of the proposed algorithm.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.