By Topic

A provably good approximation algorithm for Rectangle Escape Problem with application to PCB routing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qiang Ma ; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign ; Hui Kong ; Martin D. F. Wong ; Evangeline F. Y. Young

In this paper, we introduce and study the Rectangle Escape Problem (REP), which is motivated by PCB bus escape routing. Given a rectangular region R and a set S of rectangles within R, the REP is to choose a direction for each rectangle to escape to the boundary of R, such that the resultant maximum density over R is minimized. We prove that the REP is NP-Complete, and show that it can be formulated as an Integer Linear Program (ILP). A provably good approximation algorithm for the REP is developed by applying Linear Programming (LP) relaxation and a special rounding technique to the ILP. This approximation algorithm is also shown to work for a more general version of REP with weights (weighted REP). In addition, an iterative refinement procedure is proposed as a postprocessing step to further improve the results. Our approach is tested on a set of industrial PCB bus escape routing problems. Experimental results show that the optimal solution can be obtained within 3 seconds for each of the test cases.

Published in:

16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)

Date of Conference:

25-28 Jan. 2011