By Topic

Energy/reliability trade-offs in fault-tolerant event-triggered distributed embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Junhe Gan ; Department of Informatics and Mathematical Modelling Technical University of Denmark, Denmark ; Flavius Gruian ; Paul Pop ; Jan Madsen

This paper presents an approach to the synthesis of low-power fault-tolerant hard real-time applications mapped on distributed heterogeneous embedded systems. Our synthesis approach decides the mapping of tasks to processing elements, as well as the voltage and frequency levels for executing each task, such that transient faults are tolerated, the timing constraints of the application are satisfied, and the energy consumed is minimized. Tasks are scheduled using fixed-priority preemptive scheduling, while replication is used for recovery from multiple transient faults. Addressing energy and reliability simultaneously is especially challenging, since lowering the voltage to reduce the energy consumption has been shown to increase the transient fault rate. We presented a Tabu Search-based approach which uses an energy/reliability trade-off model to find reliable and schedulable implementations with limited energy and hardware resources. We evaluated the algorithm proposed using several synthetic and reallife benchmarks.

Published in:

16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)

Date of Conference:

25-28 Jan. 2011