Cart (Loading....) | Create Account
Close category search window
 

A Model to Study Plastic Deformation in RRP {\rm Nb}_{3}{\rm Sn} Wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barzi, E.Z. ; Fermi Nat. Accel. Lab. (Fermilab), Batavia, IL, USA ; Bossert, M. ; Gallo, G.

An important part of superconducting accelerator magnet work is the conductor. To produce magnetic fields larger than 10 T, brittle A15 conductors are typically used. The original round wire, in the form of a composite of Copper (Cu), Niobium (Nb) and Tin (Sn), is assembled into a so-called Rutherford-type cable, which is used to wind the magnet. The magnet is then subjected to a high temperature heat treatment to produce the chemical reactions that make the material superconducting. At this stage the superconductor is brittle and its superconducting properties sensitive to strain. This work is based on the development of a 2D finite element model, which simulates the mechanical behavior of Nb-Sn composite wires under deformation before heat treatment. First the composite was modeled in detail and its behavior analyzed under flat rolling using Finite Element Analysis (FEM). To identify a critical criterion, the strain results of the model were compared with those measured experimentally on cross sections of the deformed composite. Then the model was applied to a number of different wire architectures.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.