By Topic

GPU-Accelerated Minimum Distance and Clearance Queries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Krishnamurthy, A. ; Dept. of Mech. Eng., Univ. of California, Berkeley, CA, USA ; McMains, S. ; Haller, K.

We present practical algorithms for accelerating distance queries on models made of trimmed NURBS surfaces using programmable Graphics Processing Units (GPUs). We provide a generalized framework for using GPUs as coprocessors in accelerating CAD operations. By supplementing surface data with a surface bounding-box hierarchy on the GPU, we answer distance queries such as finding the closest point on a curved NURBS surface given any point in space and evaluating the clearance between two solid models constructed using multiple NURBS surfaces. We simultaneously output the parameter values corresponding to the solution of these queries along with the model space values. Though our algorithms make use of the programmable fragment processor, the accuracy is based on the model space precision, unlike earlier graphics algorithms that were based only on image space precision. In addition, we provide theoretical bounds for both the computed minimum distance values as well as the location of the closest point. Our algorithms are at least an order of magnitude faster and about two orders of magnitude more accurate than the commercial solid modeling kernel ACIS.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:17 ,  Issue: 6 )