Cart (Loading....) | Create Account
Close category search window
 

Tensor Discriminant Color Space for Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Su-Jing Wang ; Coll. of Comput. Sci. & Technol., Jilin Univ., Changchun, China ; Jian Yang ; Na Zhang ; Chun-Guang Zhou

Recent research efforts reveal that color may provide useful information for face recognition. For different visual tasks, the choice of a color space is generally different. How can a color space be sought for the specific face recognition problem? To address this problem, this paper represents a color image as a third-order tensor and presents the tensor discriminant color space (TDCS) model. The model can keep the underlying spatial structure of color images. With the definition of n-mode between-class scatter matrices and within-class scatter matrices, TDCS constructs an iterative procedure to obtain one color space transformation matrix and two discriminant projection matrices by maximizing the ratio of these two scatter matrices. The experiments are conducted on two color face databases, AR and Georgia Tech face databases, and the results show that both the performance and the efficiency of the proposed method are better than those of the state-of-the-art color image discriminant model, which involve one color space transformation matrix and one discriminant projection matrix, specifically in a complicated face database with various pose variations.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 9 )
Biometrics Compendium, IEEE

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.