By Topic

A Bayesian Network Model for Automatic and Interactive Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lei Zhang ; UtopiaCompression Corporation ; Qiang Ji

We propose a new Bayesian network (BN) model for both automatic and interactive image segmentation. A multilayer BN is constructed from an oversegmentation to model the statistical dependencies among superpixel regions, edge segments, vertices, and their measurements. The BN also incorporates various local constraints to further restrain the relationships among these image entities. Given the BN model and various image measurements, belief propagation is performed to update the probability of each node. Image segmentation is generated by the most probable explanation inference of the true states of both region and edge nodes from the updated BN. Besides the automatic image segmentation, the proposed model can also be used for interactive image segmentation. While existing interactive segmentation (IS) approaches often passively depend on the user to provide exact intervention, we propose a new active input selection approach to provide suggestions for the user's intervention. Such intervention can be conveniently incorporated into the BN model to perform actively IS. We evaluate the proposed model on both the Weizmann dataset and VOC2006 cow images. The results demonstrate that the BN model can be used for automatic segmentation, and more importantly, for actively IS. The experiments also show that the IS with active input selection can improve both the overall segmentation accuracy and efficiency over the IS with passive intervention.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 9 )