Cart (Loading....) | Create Account
Close category search window
 

Self-Assembled Monolayer-Immobilized Gold Nanoparticles as Durable, Anti-Stiction Coatings for MEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hurst, K.M. ; Dept. of Chem. Eng., Auburn Univ., Auburn, AL, USA ; Ansari, N. ; Roberts, C.B. ; Ashurst, W.R.

Self-assembled monolayer (SAM) films of p-aminophenyl trimethoxysilane (APhTS) and 3-mercaptopropyl trimethoxysilane (MPTS) were used to immobilize gold nanoparticles (AuNPs) on silicon substrates and silicon-based microdevices, which created robust nanoparticle coatings that reduced microstructure adhesion. The terminal groups of APhTS and MPTS have both been previously shown to strongly interact and/or bind with metals and metallic nanoparticles. Scanning electron microscopy (SEM) analysis indicated that APhTS and MPTS monolayers improved the adhesion of gold nanoparticles deposited on silicon substrates and microstructures. SEM analysis also showed that the gold nanoparticle/organic monolayer (AuNP/APhTS or AuNP/MPTS) films were more robust than non-immobilized AuNP coatings toward both cantilever beam mechanical contact and water erosion testing. The combination of the rough, lower-energy surfaces of AuNP/APhTS and AuNP/MPTS films also effectively reduced the adhesion exhibited between microstructured surfaces by nearly two orders of magnitude as measured by the apparent work of adhesion. Smooth native oxide-coated Si(100) in-plane surfaces typically have an adhesion energy in excess of 30 mJ/m2 while AuNP/APhTS and AuNP/MPTS coatings reduced the adhesion energy to 0.655 and 1.66 mJ/m2, respectively.

Published in:

Microelectromechanical Systems, Journal of  (Volume:20 ,  Issue: 2 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.